Unsupervised Cross-Domain Recognition by Identifying Compact Joint Subspaces
نویسندگان
چکیده
This paper introduces a new method to solve the cross-domain recognition problem. Different from the traditional domain adaption methods which rely on a global domain shift for all classes between source and target domain, the proposed method is more flexible to capture individual class variations across domains. By adopting a natural and widely used assumption – “the data samples from the same class should lay on a low-dimensional subspace, even if they come from different domains”, the proposed method circumvents the limitation of the global domain shift, and solves the cross-domain recognition by finding the compact joint subspaces of source and target domain. Specifically, given labeled samples in source domain, we construct subspaces for each of the classes. Then we construct subspaces in the target domain, called anchor subspaces, by collecting unlabeled samples that are close to each other and highly likely all fall into the same class. The corresponding class label is then assigned by minimizing a cost function which reflects the overlap and topological structure consistency between subspaces across source and target domains, and within anchor subspaces, respectively. We further combine the anchor subspaces to corresponding source subspaces to construct the compact joint subspaces. Subsequently, one-vs-rest SVM classifiers are trained in the compact joint subspaces and applied to unlabeled data in the target domain. We evaluate the proposed method on two widely used datasets: object recognition dataset for computer vision tasks, and sentiment classification dataset for natural language processing tasks. Comparison results demonstrate that the proposed method outperforms the comparison methods on both datasets.
منابع مشابه
Accurate Unsupervised Joint Named-Entity Extraction from Unaligned Parallel Text
We present a new approach to named-entity recognition that jointly learns to identify named-entities in parallel text. The system generates seed candidates through local, cross-language edit likelihood and then bootstraps to make broad predictions across both languages, optimizing combined contextual, word-shape and alignment models. It is completely unsupervised, with no manually labeled items...
متن کاملSparse Embedding-based Domain Adaptation for Object Recognition
Domain adaptation algorithms aim at handling the shift between source and target domains. A classifier is trained on images from the source domain; and the classifier recognizes objects in images from the target domain. In this paper, we present a joint subspace and dictionary learning framework for domain adaptation. Our approach simultaneously exploits the low-dimensional structures in two do...
متن کاملCombining Classifier Guided by Semi-Supervision
The article suggests an algorithm for regular classifier ensemble methodology. The proposed methodology is based on possibilistic aggregation to classify samples. The argued method optimizes an objective function that combines environment recognition, multi-criteria aggregation term and a learning term. The optimization aims at learning backgrounds as solid clusters in subspaces of the high...
متن کاملCombining Classifier Guided by Semi-Supervision
The article suggests an algorithm for regular classifier ensemble methodology. The proposed methodology is based on possibilistic aggregation to classify samples. The argued method optimizes an objective function that combines environment recognition, multi-criteria aggregation term and a learning term. The optimization aims at learning backgrounds as solid clusters in subspaces of the high...
متن کاملShift Invariant Spaces and Shift Preserving Operators on Locally Compact Abelian Groups
We investigate shift invariant subspaces of $L^2(G)$, where $G$ is a locally compact abelian group. We show that every shift invariant space can be decomposed as an orthogonal sum of spaces each of which is generated by a single function whose shifts form a Parseval frame. For a second countable locally compact abelian group $G$ we prove a useful Hilbert space isomorphism, introduce range funct...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1509.01719 شماره
صفحات -
تاریخ انتشار 2015